The chemical building blocks that make up RNA are central to its function. Pioneering studies in the mid 1970s were the first to show that cellular mRNAs contain chemically modified bases in addition to the standard A, G, C, and U residues. Recent technological advances have enabled the identification and investigation of these mRNA modifications on an unprecedented scale. As a result, our understanding of the "epitranscriptome" has rapidly accelerated in recent years, and we have gained new insights into this fundamental aspect of RNA biology.

 


mtases meyer.jpg
 

 
new.jpg

One modified base which is particularly prevalent throughout the transcriptome is N6-methyladenosine, or m6A, which occurs when A residues become methylated.

In 2012, Dr. Meyer's work led to the development of the first method for transcriptome-wide detection of m6A. This method, called MeRIP-Seq, revealed thousands of cellular mRNAs that contain m6A and sparked a renewed interest in the study of mRNA modifications (Meyer et al, Cell, 2012). Since then, laboratories around the world have sought to uncover the pathways that regulate m6A and the functional consequences of the m6A mark in regulating gene expression. Although remarkable progress has been made over the last several years, there are still many questions that remain unanswered.  

A major goal of our laboratory is to understand how m6A contributes to fundamental aspects of gene expression control. We do this using biochemical methods, transcriptomics- and proteomics-based approaches, animal models, and other novel techniques developed in our laboratory. Although much of our focus is on RNA modifications, we also explore general mechanisms of RNA regulation in the cell.

Neurobiology Projects

Our previous studies were the first to reveal that m6A is highly abundant in the brain. However, our understanding of the role that m6A plays in regulating neurophysiological processes is still in its infancy. Currently, many projects in our laboratory are focused on understanding how m6A and other RNA modifications shape gene expression programs in the nervous system. We are particularly interested in exploring the role of mRNA modifications in regulating mRNA localization and local translation in neurons. These processes are central to the control of local gene expression that underlies synaptic plasticity. We are therefore also extending our molecular studies into mouse models to determine how m6A contributes to complex processes such as learning and memory and addiction. 

In addition, several projects in our laboratory investigate the proteins that bind to methylated RNAs in the brain. We are currently exploring how these protein:RNA interactions contribute to both neurodevelopment and neurodegenerative disease.